Sale 10% Off Your First Order

Cryogenic engineering (cryogenics) is the production, preservation, and use or application of cold. This book presents a comprehensive introduction to designing systems to deal with heat - effective management of cold, exploring the directing (or redirecting), promoting, or inhibiting this flow of heat in a practical way. It provides a description of the necessary theory, design methodology, and advanced demonstrations (thermodynamics, heat transfer, thermal insulation, fluid mechanics) for many frequently occurring situations in low-temperature apparatus. This includes systems that are widely used such as superconducting magnets for magnetic resonance imaging (MRI), high-energy physics, fusion, tokamak and free electron laser systems, space launch and exploration, and energy and transportation use of liquid hydrogen, as well as potential future applications of cryo-life sciences and chemical industries.
The book is written with the assumption that the reader has an undergraduate understanding of thermodynamics, heat transfer, and fluid mechanics, in addition to the mechanics of materials, material science, and physical chemistry. Cryogenic Heat Management: Technology and Applications for Science and Industry will be a valuable guide for those researching, teaching, or working with low-temperature or cryogenic systems, in addition to postgraduates studying the topic.
Key features:
Jonathan A. Demko began his career in industry with the X-30 National Aerospace Plane (NASP) thermal management. He transitioned to the Super Collider Laboratory Cryogenics Department and then the Oak Ridge National Laboratory, developing cryogenics for high temperature superconducting (HTS) power equipment. He is Professor of Mechanical Engineering with LeTourneau University in Texas.
James E. Fesmire, renowned expert in cryogenic systems design and thermal insulation, is President of Energy Evolution LLC, Chief Architect and CTO of GenH2 Corp. He is founder of the Cryogenics Test Laboratory at Kennedy Space Center (NASA-retired). Distinctions include the NASA Distinguished Service Medal, an R&D 100 Award, 20 US Patents, and inductee of the NASA Inventors Hall of Fame.
Quan-Sheng Shu is a leading expert in cryogenics; has authored four monographs and over 100 papers on cryogenics and superconductivity; and served as a board director of the Cryogenic Engineering Conference and IIR -A1 Secretary. His technically innovative achievements include HTS Cryo-Maglev, SRF cavity, MLI, and Special Cryostat at Fermilab, SSC Lab, Cornell University, DESY, and Zhejiang University.